Properties of Proportions | For positive a, b, c, and d: | In proofs, use this reason: | |---|--------------------------------| | 1. If $\frac{a}{b} = \frac{c}{d'}$ then $ad = bc$. | Mult. prop. of equality | | Multiply both sides by bd . 2. If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a}{c} = \frac{b}{d}$. | Mult. prop. of equality | | Multiply both sides by $\frac{b}{c}$. 3. If $\frac{a}{b} = \frac{c}{d}$, then $\frac{b}{a} = \frac{d}{c}$. | Mult. prop. of equality | | Multiply both sides by $\frac{bd}{ac}$. 4. If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+b}{b} = \frac{c+d}{d}$. | Add. prop. of equality | | Add 1 to both sides, using $1 = \frac{b}{b} = \frac{d}{d}$. 5. If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a-b}{b} = \frac{c-d}{d}$. | Add. prop. of equality | | Add -1 to both sides, using $1 = \frac{b}{b} = \frac{d}{d}$. 6. If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+c}{b+d} = \frac{a}{b}$. | Summation prop. of proportions | | Let $\frac{a}{b} = k = \frac{c}{d}$. Then $a = bk$, $c = dk$, and $a + c = k(b + d)$. | , |